3.9.49 \(\int \cot ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^{3/2} \, dx\) [849]

3.9.49.1 Optimal result
3.9.49.2 Mathematica [A] (verified)
3.9.49.3 Rubi [A] (verified)
3.9.49.4 Maple [B] (warning: unable to verify)
3.9.49.5 Fricas [B] (verification not implemented)
3.9.49.6 Sympy [F(-1)]
3.9.49.7 Maxima [F]
3.9.49.8 Giac [F(-1)]
3.9.49.9 Mupad [F(-1)]

3.9.49.1 Optimal result

Integrand size = 25, antiderivative size = 185 \[ \int \cot ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^{3/2} \, dx=\frac {i (i a-b)^{3/2} \arctan \left (\frac {\sqrt {i a-b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{d}-\frac {i (i a+b)^{3/2} \text {arctanh}\left (\frac {\sqrt {i a+b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{d}-\frac {2 a \sqrt {\cot (c+d x)} \sqrt {a+b \tan (c+d x)}}{d} \]

output
I*(I*a-b)^(3/2)*arctan((I*a-b)^(1/2)*tan(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(1/ 
2))*cot(d*x+c)^(1/2)*tan(d*x+c)^(1/2)/d-I*(I*a+b)^(3/2)*arctanh((I*a+b)^(1 
/2)*tan(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(1/2))*cot(d*x+c)^(1/2)*tan(d*x+c)^( 
1/2)/d-2*a*cot(d*x+c)^(1/2)*(a+b*tan(d*x+c))^(1/2)/d
 
3.9.49.2 Mathematica [A] (verified)

Time = 0.51 (sec) , antiderivative size = 175, normalized size of antiderivative = 0.95 \[ \int \cot ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^{3/2} \, dx=\frac {\sqrt {\cot (c+d x)} \left (\sqrt [4]{-1} (-a+i b)^{3/2} \arctan \left (\frac {\sqrt [4]{-1} \sqrt {-a+i b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right ) \sqrt {\tan (c+d x)}-\sqrt [4]{-1} (a+i b)^{3/2} \arctan \left (\frac {\sqrt [4]{-1} \sqrt {a+i b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right ) \sqrt {\tan (c+d x)}-2 a \sqrt {a+b \tan (c+d x)}\right )}{d} \]

input
Integrate[Cot[c + d*x]^(3/2)*(a + b*Tan[c + d*x])^(3/2),x]
 
output
(Sqrt[Cot[c + d*x]]*((-1)^(1/4)*(-a + I*b)^(3/2)*ArcTan[((-1)^(1/4)*Sqrt[- 
a + I*b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]]*Sqrt[Tan[c + d*x]] 
- (-1)^(1/4)*(a + I*b)^(3/2)*ArcTan[((-1)^(1/4)*Sqrt[a + I*b]*Sqrt[Tan[c + 
 d*x]])/Sqrt[a + b*Tan[c + d*x]]]*Sqrt[Tan[c + d*x]] - 2*a*Sqrt[a + b*Tan[ 
c + d*x]]))/d
 
3.9.49.3 Rubi [A] (verified)

Time = 0.92 (sec) , antiderivative size = 184, normalized size of antiderivative = 0.99, number of steps used = 13, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.480, Rules used = {3042, 4729, 3042, 4050, 27, 3042, 4099, 3042, 4098, 104, 216, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cot ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^{3/2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \cot (c+d x)^{3/2} (a+b \tan (c+d x))^{3/2}dx\)

\(\Big \downarrow \) 4729

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \int \frac {(a+b \tan (c+d x))^{3/2}}{\tan ^{\frac {3}{2}}(c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \int \frac {(a+b \tan (c+d x))^{3/2}}{\tan (c+d x)^{3/2}}dx\)

\(\Big \downarrow \) 4050

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-2 \int -\frac {2 a b-\left (a^2-b^2\right ) \tan (c+d x)}{2 \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx-\frac {2 a \sqrt {a+b \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\int \frac {2 a b-\left (a^2-b^2\right ) \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx-\frac {2 a \sqrt {a+b \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\int \frac {2 a b-\left (a^2-b^2\right ) \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx-\frac {2 a \sqrt {a+b \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}\right )\)

\(\Big \downarrow \) 4099

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {1}{2} i (a-i b)^2 \int \frac {i \tan (c+d x)+1}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx-\frac {1}{2} i (a+i b)^2 \int \frac {1-i \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx-\frac {2 a \sqrt {a+b \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {1}{2} i (a-i b)^2 \int \frac {i \tan (c+d x)+1}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx-\frac {1}{2} i (a+i b)^2 \int \frac {1-i \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx-\frac {2 a \sqrt {a+b \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}\right )\)

\(\Big \downarrow \) 4098

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {i (a-i b)^2 \int \frac {1}{(1-i \tan (c+d x)) \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}d\tan (c+d x)}{2 d}-\frac {i (a+i b)^2 \int \frac {1}{(i \tan (c+d x)+1) \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}d\tan (c+d x)}{2 d}-\frac {2 a \sqrt {a+b \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}\right )\)

\(\Big \downarrow \) 104

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {i (a-i b)^2 \int \frac {1}{1-\frac {(i a+b) \tan (c+d x)}{a+b \tan (c+d x)}}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}}{d}-\frac {i (a+i b)^2 \int \frac {1}{\frac {(i a-b) \tan (c+d x)}{a+b \tan (c+d x)}+1}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}}{d}-\frac {2 a \sqrt {a+b \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}\right )\)

\(\Big \downarrow \) 216

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {i (a-i b)^2 \int \frac {1}{1-\frac {(i a+b) \tan (c+d x)}{a+b \tan (c+d x)}}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}}{d}-\frac {i (a+i b)^2 \arctan \left (\frac {\sqrt {-b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d \sqrt {-b+i a}}-\frac {2 a \sqrt {a+b \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}\right )\)

\(\Big \downarrow \) 219

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {i (a+i b)^2 \arctan \left (\frac {\sqrt {-b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d \sqrt {-b+i a}}+\frac {i (a-i b)^2 \text {arctanh}\left (\frac {\sqrt {b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d \sqrt {b+i a}}-\frac {2 a \sqrt {a+b \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}\right )\)

input
Int[Cot[c + d*x]^(3/2)*(a + b*Tan[c + d*x])^(3/2),x]
 
output
Sqrt[Cot[c + d*x]]*Sqrt[Tan[c + d*x]]*(((-I)*(a + I*b)^2*ArcTan[(Sqrt[I*a 
- b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]])/(Sqrt[I*a - b]*d) + (I 
*(a - I*b)^2*ArcTanh[(Sqrt[I*a + b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + 
 d*x]]])/(Sqrt[I*a + b]*d) - (2*a*Sqrt[a + b*Tan[c + d*x]])/(d*Sqrt[Tan[c 
+ d*x]]))
 

3.9.49.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 104
Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x 
_)), x_] :> With[{q = Denominator[m]}, Simp[q   Subst[Int[x^(q*(m + 1) - 1) 
/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^(1/q)], x] 
] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && L 
tQ[-1, m, 0] && SimplerQ[a + b*x, c + d*x]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4050
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*c - a*d)*(a + b*Tan[e + f*x])^(m + 
 1)*((c + d*Tan[e + f*x])^(n - 1)/(f*(m + 1)*(a^2 + b^2))), x] + Simp[1/((m 
 + 1)*(a^2 + b^2))   Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^ 
(n - 2)*Simp[a*c^2*(m + 1) + a*d^2*(n - 1) + b*c*d*(m - n + 2) - (b*c^2 - 2 
*a*c*d - b*d^2)*(m + 1)*Tan[e + f*x] - d*(b*c - a*d)*(m + n)*Tan[e + f*x]^2 
, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^ 
2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, -1] && LtQ[1, n, 2] && IntegerQ[ 
2*m]
 

rule 4098
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
 (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si 
mp[A^2/f   Subst[Int[(a + b*x)^m*((c + d*x)^n/(A - B*x)), x], x, Tan[e + f* 
x]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && 
 NeQ[a^2 + b^2, 0] && EqQ[A^2 + B^2, 0]
 

rule 4099
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
 (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si 
mp[(A + I*B)/2   Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(1 - I*T 
an[e + f*x]), x], x] + Simp[(A - I*B)/2   Int[(a + b*Tan[e + f*x])^m*(c + d 
*Tan[e + f*x])^n*(1 + I*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A 
, B, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[A^2 + B^2, 
0]
 

rule 4729
Int[(cot[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Simp[(c*Cot[a 
+ b*x])^m*(c*Tan[a + b*x])^m   Int[ActivateTrig[u]/(c*Tan[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownTangentIntegrandQ[u, 
x]
 
3.9.49.4 Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(2229\) vs. \(2(151)=302\).

Time = 37.05 (sec) , antiderivative size = 2230, normalized size of antiderivative = 12.05

method result size
default \(\text {Expression too large to display}\) \(2230\)

input
int(cot(d*x+c)^(3/2)*(a+b*tan(d*x+c))^(3/2),x,method=_RETURNVERBOSE)
 
output
-1/4/d*(-1/(1-cos(d*x+c))*(csc(d*x+c)*(1-cos(d*x+c))^2-sin(d*x+c)))^(3/2)* 
((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-2*b*(csc(d*x+c)-cot(d*x+c))-a)/(csc(d*x+ 
c)^2*(1-cos(d*x+c))^2-1))^(1/2)*(ln(1/(1-cos(d*x+c))*(-csc(d*x+c)*a*(1-cos 
(d*x+c))^2+2*(a^2+b^2)^(1/2)*(1-cos(d*x+c))+2*sin(d*x+c)*(-csc(d*x+c)*(csc 
(d*x+c)^2*a*(1-cos(d*x+c))^2-2*b*(csc(d*x+c)-cot(d*x+c))-a)*(1-cos(d*x+c)) 
)^(1/2)*(b+(a^2+b^2)^(1/2))^(1/2)+2*b*(1-cos(d*x+c))+sin(d*x+c)*a))*(b+(a^ 
2+b^2)^(1/2))^(1/2)*(a^2+b^2)^(1/2)*b*(-b+(a^2+b^2)^(1/2))^(1/2)*(csc(d*x+ 
c)-cot(d*x+c))-ln(-1/(1-cos(d*x+c))*(-csc(d*x+c)*a*(1-cos(d*x+c))^2+2*(a^2 
+b^2)^(1/2)*(1-cos(d*x+c))-2*sin(d*x+c)*(-csc(d*x+c)*(csc(d*x+c)^2*a*(1-co 
s(d*x+c))^2-2*b*(csc(d*x+c)-cot(d*x+c))-a)*(1-cos(d*x+c)))^(1/2)*(b+(a^2+b 
^2)^(1/2))^(1/2)+2*b*(1-cos(d*x+c))+sin(d*x+c)*a))*(b+(a^2+b^2)^(1/2))^(1/ 
2)*(a^2+b^2)^(1/2)*b*(-b+(a^2+b^2)^(1/2))^(1/2)*(csc(d*x+c)-cot(d*x+c))+a^ 
2*ln(1/(1-cos(d*x+c))*(-csc(d*x+c)*a*(1-cos(d*x+c))^2+2*(a^2+b^2)^(1/2)*(1 
-cos(d*x+c))+2*sin(d*x+c)*(-csc(d*x+c)*(csc(d*x+c)^2*a*(1-cos(d*x+c))^2-2* 
b*(csc(d*x+c)-cot(d*x+c))-a)*(1-cos(d*x+c)))^(1/2)*(b+(a^2+b^2)^(1/2))^(1/ 
2)+2*b*(1-cos(d*x+c))+sin(d*x+c)*a))*(b+(a^2+b^2)^(1/2))^(1/2)*(-b+(a^2+b^ 
2)^(1/2))^(1/2)*(csc(d*x+c)-cot(d*x+c))-ln(1/(1-cos(d*x+c))*(-csc(d*x+c)*a 
*(1-cos(d*x+c))^2+2*(a^2+b^2)^(1/2)*(1-cos(d*x+c))+2*sin(d*x+c)*(-csc(d*x+ 
c)*(csc(d*x+c)^2*a*(1-cos(d*x+c))^2-2*b*(csc(d*x+c)-cot(d*x+c))-a)*(1-cos( 
d*x+c)))^(1/2)*(b+(a^2+b^2)^(1/2))^(1/2)+2*b*(1-cos(d*x+c))+sin(d*x+c)*...
 
3.9.49.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 3545 vs. \(2 (145) = 290\).

Time = 0.58 (sec) , antiderivative size = 3545, normalized size of antiderivative = 19.16 \[ \int \cot ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^{3/2} \, dx=\text {Too large to display} \]

input
integrate(cot(d*x+c)^(3/2)*(a+b*tan(d*x+c))^(3/2),x, algorithm="fricas")
 
output
1/8*(d*sqrt((3*a^2*b - b^3 + d^2*sqrt(-(a^6 - 6*a^4*b^2 + 9*a^2*b^4)/d^4)) 
/d^2)*log((((a^6 + a^4*b^2 - 12*a^2*b^4)*d*tan(d*x + c)^2 + 2*(3*a^5*b - 5 
*a^3*b^3 - 12*a*b^5)*d*tan(d*x + c) - (a^6 - 7*a^4*b^2 + 12*a^2*b^4)*d - 2 
*(a^3*d^3*tan(d*x + c) + 2*a^2*b*d^3 - (a^2*b + 4*b^3)*d^3*tan(d*x + c)^2) 
*sqrt(-(a^6 - 6*a^4*b^2 + 9*a^2*b^4)/d^4))*sqrt((3*a^2*b - b^3 + d^2*sqrt( 
-(a^6 - 6*a^4*b^2 + 9*a^2*b^4)/d^4))/d^2) + 2*((a^7 - 5*a^3*b^4 - 12*a*b^6 
)*tan(d*x + c)^2 + 2*(a^6*b - a^4*b^3 - 6*a^2*b^5)*tan(d*x + c) + (2*(a^3* 
b + 2*a*b^3)*d^2*tan(d*x + c)^2 - (a^4 + 3*a^2*b^2 + 4*b^4)*d^2*tan(d*x + 
c))*sqrt(-(a^6 - 6*a^4*b^2 + 9*a^2*b^4)/d^4))*sqrt(b*tan(d*x + c) + a)/sqr 
t(tan(d*x + c)))/(tan(d*x + c)^2 + 1)) + d*sqrt((3*a^2*b - b^3 + d^2*sqrt( 
-(a^6 - 6*a^4*b^2 + 9*a^2*b^4)/d^4))/d^2)*log(-(((a^6 + a^4*b^2 - 12*a^2*b 
^4)*d*tan(d*x + c)^2 + 2*(3*a^5*b - 5*a^3*b^3 - 12*a*b^5)*d*tan(d*x + c) - 
 (a^6 - 7*a^4*b^2 + 12*a^2*b^4)*d - 2*(a^3*d^3*tan(d*x + c) + 2*a^2*b*d^3 
- (a^2*b + 4*b^3)*d^3*tan(d*x + c)^2)*sqrt(-(a^6 - 6*a^4*b^2 + 9*a^2*b^4)/ 
d^4))*sqrt((3*a^2*b - b^3 + d^2*sqrt(-(a^6 - 6*a^4*b^2 + 9*a^2*b^4)/d^4))/ 
d^2) + 2*((a^7 - 5*a^3*b^4 - 12*a*b^6)*tan(d*x + c)^2 + 2*(a^6*b - a^4*b^3 
 - 6*a^2*b^5)*tan(d*x + c) + (2*(a^3*b + 2*a*b^3)*d^2*tan(d*x + c)^2 - (a^ 
4 + 3*a^2*b^2 + 4*b^4)*d^2*tan(d*x + c))*sqrt(-(a^6 - 6*a^4*b^2 + 9*a^2*b^ 
4)/d^4))*sqrt(b*tan(d*x + c) + a)/sqrt(tan(d*x + c)))/(tan(d*x + c)^2 + 1) 
) - d*sqrt((3*a^2*b - b^3 + d^2*sqrt(-(a^6 - 6*a^4*b^2 + 9*a^2*b^4)/d^4...
 
3.9.49.6 Sympy [F(-1)]

Timed out. \[ \int \cot ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^{3/2} \, dx=\text {Timed out} \]

input
integrate(cot(d*x+c)**(3/2)*(a+b*tan(d*x+c))**(3/2),x)
 
output
Timed out
 
3.9.49.7 Maxima [F]

\[ \int \cot ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^{3/2} \, dx=\int { {\left (b \tan \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \cot \left (d x + c\right )^{\frac {3}{2}} \,d x } \]

input
integrate(cot(d*x+c)^(3/2)*(a+b*tan(d*x+c))^(3/2),x, algorithm="maxima")
 
output
integrate((b*tan(d*x + c) + a)^(3/2)*cot(d*x + c)^(3/2), x)
 
3.9.49.8 Giac [F(-1)]

Timed out. \[ \int \cot ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^{3/2} \, dx=\text {Timed out} \]

input
integrate(cot(d*x+c)^(3/2)*(a+b*tan(d*x+c))^(3/2),x, algorithm="giac")
 
output
Timed out
 
3.9.49.9 Mupad [F(-1)]

Timed out. \[ \int \cot ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^{3/2} \, dx=\int {\mathrm {cot}\left (c+d\,x\right )}^{3/2}\,{\left (a+b\,\mathrm {tan}\left (c+d\,x\right )\right )}^{3/2} \,d x \]

input
int(cot(c + d*x)^(3/2)*(a + b*tan(c + d*x))^(3/2),x)
 
output
int(cot(c + d*x)^(3/2)*(a + b*tan(c + d*x))^(3/2), x)